Skip to main content

Course Search

Course Search

Course Search

Electronic Engineering with Computer Systems – Higher Cert

  • Campus: Moylish, Limerick City

  • years: 2


Course Overview

This programme is ideal if you want to build an Electronic Engineering career in Design, Manufacturing, Servicing, Marketing or Consultancy. As a graduate, you will have both practical and academic expertise in the area of electronic engineering, telecommunications and in computer and networking systems.

The programme includes practical and project-based learning in well-equipped modern laboratories. The department maintains close links with local industries and consequently many of our graduates are offered employment even before graduation.

The hands-on nature of this programme means that you learn more than just the theory, you learn the skills that will put you a step ahead of the competition upon graduation. The wide scope of this programme gives you many possible career paths and allows you to develop your strengths for future employment.

Contact Details

Department of Electrical and Electronic Engineering

Email: Electronics.midwest@tus.ie

What are the entry requirements?

Leaving Certificate

A minimum of 4 O6/H7 grades in Leaving Certificate subjects, including English/Irish plus a minimum of O5 in Mathematics.

Mature Applicants

Candidates applying as mature applicants may be required to attend an interview and may be requested to take an aptitude test to prove their suitability for a place on this programme.

Course Modules

  • Analogue Electronics 1

    Credits: 10

    To introduce the learner to analogue electronic circuits and devices.

  • C Programming 1

    Credits: 10

    Introduction to computer programming on Linux using the C programming language.

  • Digital Electronics

    Credits: 10

    This module introduces the learner to digital electronic circuits and devices.

  • Electrical Technology 1

    Credits: 10

    To introduce the learner to basic electric circuits and electrical devices.

  • Engineering Mathematics 1

    Credits: 10

    This module provides a foundation in mathematical principles: arithmetic, algebra, trigonometry, complex numbers, elementary calculus and statistics. The theory is kept to a minimum, with problem-solving used extensively to establish and exemplify the theory. The material will provide engineering applications; the learner will be able to apply standard mathematical techniques to analyse and solve electrical, electronic and related engineering problems.

  • Engineering Science

    Credits: 5

    The aim of the module is to introduce students to a broad knowledge of fundamental Principles and Practical applications in Engineering Science neccessary to support other core modules. The module provides a comprehesive grounding in fundamental Engineering that is relevent to multiple Engineering courses in the department.

  • Project 1

    Credits: 5

    To provide the learner with an opportunity to develop valuable transferable personal and professional skills. Utilising an active learning strategy, the learners will develop their skills in in a range of areas such as project management, decision-making, problem solving, team working and communications. The student will apply these skills to a series of mini projects.

  • Analogue Electronics 2

    Credits: 10

    To extend the learners understanding of analogue electronic circuit devices including amplifiers and switching devices. Design opamp circuits for real world applications. Further the understanding of power supplies and data aquisition systems.

  • C Programming 2

    Credits: 10

    This modules covers the more advanced features of the C language, including memory mangement, pointers, structures, file and port I/O

  • Digital Design and Micro-Controllers

    Credits: 10

    This module expands on the digital foundation gained in year 1 of the programme and it also introduces micro – controllers.

  • Electronic CAD, Build and Simulation

    Credits: 5

    The aims of this module are to give the learner a detailed knowledge of schematic capture of electronic circuits, their layout and simulation in a commercial CAD package. The learner will also construct a prototype to meet the specification given by the supervisor to incorporate and integrate aspects of other modules on the programme.

  • Engineering Mathematics 2

    Credits: 10

    To give the learner broad competencies in applied engineering mathematics. At the end of this module, the learner will be able to apply standard mathematical techniques to model and solve problems in engineering.

  • Project 2

    Credits: 5

    To provide the learner with an opportunity to develop valuable transferable personal and professional skills. Utilising an active learning strategy, the learners will develop their skills in in a range of areas such as project management, decision-making, problem solving, team working and communications. The student will apply these skills to a series of mini team projects.

  • Telecommunications and Networking Principles

    Credits: 10

    To give the learner knowledge of some signal processing, modulation and transmission methods used in digital and analog telecommunication systems. To give the learner knowledge of networking and internetworking principles.

What can you do after this programme?

Graduates of this programme have worked in positions such as:

  • Electronic Design Engineer
  • Embedded Design Engineer
  • Test/Maintenance Engineer/Technician
  • Industry Sales/Marketing

Successful graduates of this programme are eligible to progress to the Level 7 Bachelor of Engineering in Electronic Engineering.