The viability of large-scale use of micro hydro-electric power plants in rural Ireland. **Eoin O'Reilly.**

Aim of the Project

- A literature review was intended to be undertaken.
- To assess what percentage of the grid's output is renewable energy.
- To assess the possible production level from micro-hydro electric power plants.
- To compare hydro-electrical systems.
- To assess the pros and cons in relation to cost savings.

Background

With Ireland transitioning towards renewable energy, micro-hydro power presents a sustainable alternative for rural energy generation. Many rural areas lack direct access to the national grid or face unreliable supply. Micro hydroelectric electricity systems, particularly undershot water wheels, offer a viable solution by utilizing small river streams to generate consistent energy. A was conducted, comprehensive study field including literature reviews, computational measurements, and fluid dynamics (CFD) simulations, to evaluate the viability of such systems in an Irish setting.

Objectives

- 1. Conduct a critical literature review of existing micro-hydro systems and their applications.
- 2. Assess renewable energy contributions to Ireland's power grid and identify gaps.
- 3. Perform fieldwork to analyse river flow rates and head pressure for power generation.
- 4. Use computational fluid dynamics (CFD) to simulate water flow interaction with a microhydro system.
- economic feasibility, including 5. Evaluate expected return on potential costs, investment, and market interest through surveys.

CAD

The CAD modelling was taken from basic principles assessed in the literature review section of this study and a frame to support the main water wheel with paddles.

This section was used to assess the success of the overall system when in place in a particular stream in which the relevant data has been retrieved from in order to calculate its output.

Ireland.

Yes 22 No 6

>5 years >10 vears

>20 years

CFD

Survey

A survey was created and dispersed to gain a greater understanding of the importance and potential need for this system throughout rural

Is there a river/stream within a 2 km radius of where you live/farmyard? (0 point)

Calculations

All necessary data was measured from the stream in question and recorded and later converted into an Excell table for use in the upcoming formula.

Specifications of river							
Point in run		Avg. depth (M)		Avg. width (M)		Test length (M)	
Point 1		0.194733333		4.8768		6.096	
Point 2		0.2032		4.8			
Point 3		0.254		3.81			
Overall average of test length		0.2173	311111	4.4956		6.096	
		Tes	t results				
Lap ni La		umber	Times t	Times taken (Sec)			
		p 1	e	5.24			
La La		p 2	6.6				
La La		<mark>p3</mark> 8		3.06			
La La		p 4	6.38				
	La	р 5	7	7.63			
	Lap 6		5.98				
	Avg. time (Sec)		6.815				
Relevant calculations				e cor	np	leted	to

the velocity of the stream in assess question.

Velocity of stream = *Width x Depth x (Distance* \div *Time)*

Velocity of stream = $4.496m \times 0.217m \times (6.096m \div 6.815s)$

Conclusions

The project concluded that increasing water bills on farms are crucial for livestock welfare. To pump addresses this, water was sourced from a nearby river, pumped into a reservoir above water troughs in sheds for gravity-fed distribution.

References

Abeykoon, C., 2022. Modelling and optimisation of a Kaplan turbine — A comprehensive theoretical and CFD study. Cleaner Energy Systems, 3(100017), p.