An Investigation on the Impact of Occupancy Patterns On Energy Performance In Industrial Buildings Joseph Ohanya

Aim of the Investigation

The aim of the investigation to gather information on **Energy Saving Strategies** that could be implemented into 'Smart Buildings' (NZEB) & also to investigate if Occupancy has a **major effect on Energy Performance in Industrial Buildings** of a selected typography

Literature Review

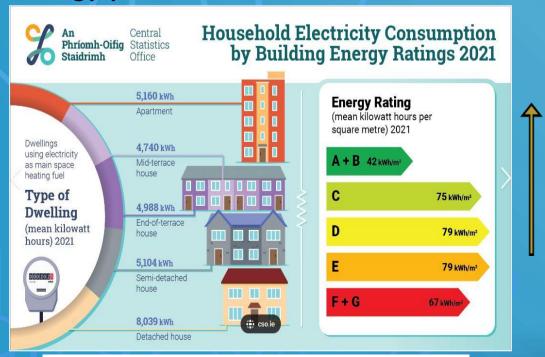
Energy Performance explained

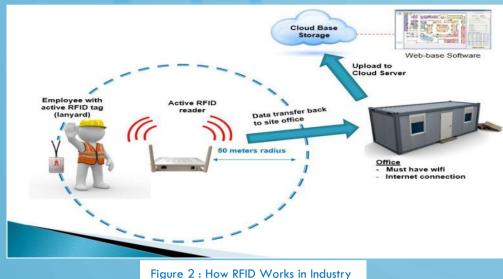
It is the sustainability of the energy efficiency of a building of any type, involving calculation of average energy consumption to determine its actual energy performance rating.

 \mathbf{A}

Energy performance & Building Occupancy Correlation

The relationship between Building occupancy and Energy performance is defined as Energy wastage due to employee interaction with energy consuming equipment. proper operation can lead to a decrease in energy wastage, in turn improving energy performance.




Figure 1 : Graph on Energy Consumption in different building typography's

⇒

 ∇

Methodology Research Results

- Through Surveying it was found that :
- HVAC Systems was a main contributor to energy consumption
- **RFID** is the most popular methods of tracking occupancy

Relevant Case Studies Findings From Case Study #1:

 It is crucial to monitor the permittable Air-Change rates per hour, as it can have an optimistic effect on energy performance

From Case Study #2:

 Strong correlation between building occupancy and energy consumption in all building typography's (Strongest in Office spaces) involved in the study.

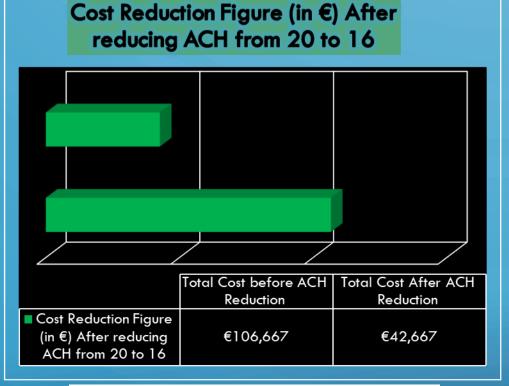


Chart 1 : Bar Chart Representing data from Case Study #1

Investigation Insights & Guidelines

Investigation Insights

- Cleanrooms play a significant role in the overall energy consumption of pharmaceutical manufacturing facilities.
- Variable Refrigerant Flow Systems would be the most suited HVAC System for use in cleanrooms

Figure 4 : Typical Cleanroom in a pharmaceutical Industrial Factory

Energy Efficiency Guidelines

1.

2.

3.

ӡ

- Installation of Presence sensors on to lighting devices. Space Ventilation Conditions should be closely monitored in both low & high occupancy levels.
- Energy management systems should be used in all industrial manufacturing buildings.

Cleanroom HVAC System

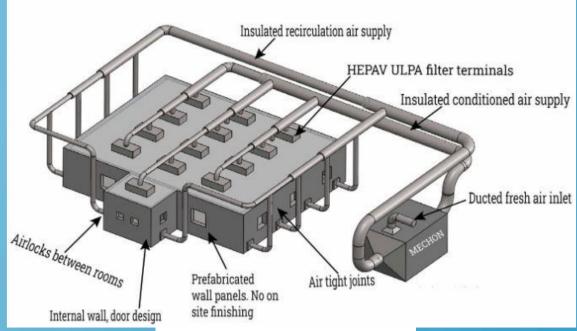


Figure 3 : Variable Refrigerant Flow System

Lumens	Standard Incandescent	New Halogen Incandescent	CFLs	LEDs	
450 Iumens	40 Watts \$5.34/yr	29 Watts \$3.87/yr	10 Watts \$1.34/yr	5 Watts \$0.67/yr	energy use energy cost per year
800 Iumens	60 Watts \$8.02/yr	43 Watts \$5.74/yr	13 Watts \$1.74/yr	10 Watts \$1.34/yr	energy use energy cost per year
1100 lumens	75 Watts \$10.02/yr	53 Watts \$7.08/yr	16 Watts \$2.14/yr	15 Watts \$2.00/yr	energy use energy cost per year
1600 lumens	100 Watts \$13.36	72 Watts \$9.62/yr	20 Watts \$2.67/yr	19 Watts \$2.54/yr	energy use energy cost per year
Typical Life Span based on 3 hours of use per day	1 year	1-2 years	10 years	15-25 years	
Average cost of light bulb	\$2.00	\$7.00	\$11.00	\$20.00	
Table 1 : Average Cost of various lightbulbs					

References

> Lee, J., Kim, T. W., Lee, C., & Koo, C. (2021). A scalable platform for investigating the space-specific features of the temporal energy usage pattern and saving potential with real-time bigdata. Journal of Cleaner Production, 314.

Lam, J. C., & Hui, S. C. M. (1996). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 27–39.

Cozza, S., Chambers, J., Brambilla, A., & Patel, M. K. (2021). In search of optimal consumption: A review of causes and solutions to the Energy Performance Gap in residential buildings. In Energy and Buildings (Vol. 249)