Mid-Process Inspection Abbie.rodgers8@gmail.com TUS **Abbie Rodgers – Precision Engineering BEng**

Aim of the Project

The aim of this project is to explore and inspect a part using the CMM. Evaluating manufacturing operations, focusing on accuracy, efficiency, and the impact on production accuracy.

Objectives

Develop CAM program for optimized machining of workpiece and fixture.

Develop and execute CMM inspections post-machining for previously machined operation one.

Machine fixture and operation two with CAM programmed toolpaths.

Develop and execute CMM inspections post-machining for the newly programmed and machined operation two.

Analyse and compare CMM vs. Hexagon Arm measurements for workpiece.

Background

Inspection Equipment

•Coordinate Measuring Machines (CMMs): Utilized for precise geometrical measurements.

•Optical Systems: Employed for non-contact assessments of complex parts.

•Traditional Callipers and Micrometres: Essential for accurate dimensional checks.

•Importance: These tools are crucial for ensuring product quality and strict adherence to specifications.

Photo of: Hexagon CMM

Machine-Integrated Inspection Systems

Tolerances for turning operations on the •Automation of Quality Assurance: Mazak Quick Turn Nexus 250-II MSY are Utilizes advanced sensors and typically within ± 0.005 mm. algorithms. Milling operations with live tooling may •Precision Measurements: Capable of have broader tolerances of ± 0.010 mm. performing highly accurate assessments. Several factors influence these •Reduction of Manual Errors: Minimizes tolerances: human mistakes in quality control The machine's mechanical precision. processes. The material being machined. •Manufacturing Efficiency: Enhances overall productivity by streamlining The specific type of operation. quality assurance steps. Wear on the tools used.

Photo of: Received Part

Literature Review

The literature on mid-process inspection using CMMs highlights the importance of addressing data capture challenges, using advancements in CAIP, integrating digital twins, applying free-form surface inspection techniques, and considering statistical issues. These areas are critical for improving the efficiency, accuracy, and CMM reliability inspections of in manufacturing. Projects that aim to inspection mid-process improve from improve the processes can knowledge provided by these studies, suggesting a varied approach that combines technological improvements and addresses existing challenges.

Machining Tolerances

- The skill level of the operator and the programming quality.

n	admis	PARTNAME	: Abbie Back	Cover OP1-3		Marc	th 13, 2024	12:07
μ		REVINUMBE	REV NUMBER :		SER NUMBER :		STATS COUNT : 1	
#	MM LOCI	- HOLE 1 IN AR	RAY					
AX	NOMINAL	+TOL	-TOL	MEAS	DEV	OUTTOL		
х	0.000	0.080	0.080	-0.006	-0.006	0.000		
Y -70.000		0.080	0.080	-70.045	-0.045	0.000		
D	4.200	0.012	0.000	4.211	0.011	0.000		a de card
0	MM LOC2	- HOLE 2 IN ARI	RAY					
AX	NOMINAL	+TOL	-TOL	MEAS	DEV	OUTTOL		
х	54.728	0.080	0.080	54.772	0.044	0.000	· · · ·	
Y	-43.644	0.080	0.080	-43.651	-0.006	0.000		
D	4.200	0.012	0.000	4.211	0.011	0.000		
#	MM LOC3	- HOLE 3 IN ARI	RAY					
AX	NOMINAL	+TOL	-TOL	MEAS	DEV	OUTTOL		
х	68.245	0.080	0.080	68.307	0.062	0.000		
Y	15.576	0.080	0.080	15.558	-0.018	0.000	· · ·	
D	4.200	0.012	0.000	4.210	0.010	0.000		
0	MM LOC4	- HOLE 4 IN ARI	RAY					
AX	NOMINAL	+TOL	-TOL	MEAS	DEV	OUTTOL		
х	30.372	0.080	0.080	30.438	0.066	0.000		
Y	63.068	0.080	0.080	63.106	0.038	0.000		
D	4.200	0.012	0.000	4.219	0.019	0.007		

CMM OP1 Results

Photo of: PCDMIS Results

Future Developments

The integration of robotics with precision measurement tools like CMM will further inspection the automate process, reducing human error and increasing quality. Robots equipped with CMM sensors can perform complex inspections on a variety of parts and assemblies, ensuring consistent quality across the production cycle.

Future CMMs are expected to use AI and machine learning algorithms to improve their predictive capabilities. By analysing historical data, these intelligent systems can predict tool wear, anticipate potential defects, and recommend or take corrective actions, hence automating quality control improving and manufacturing precision.