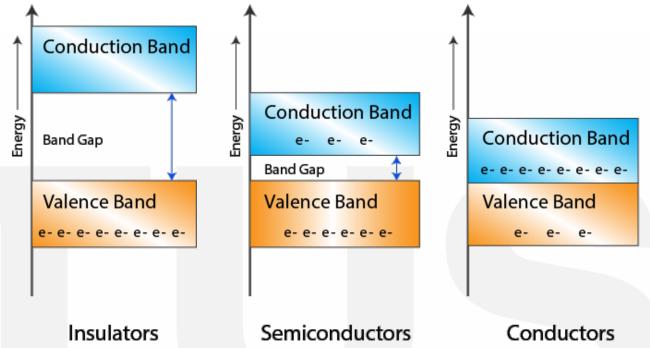
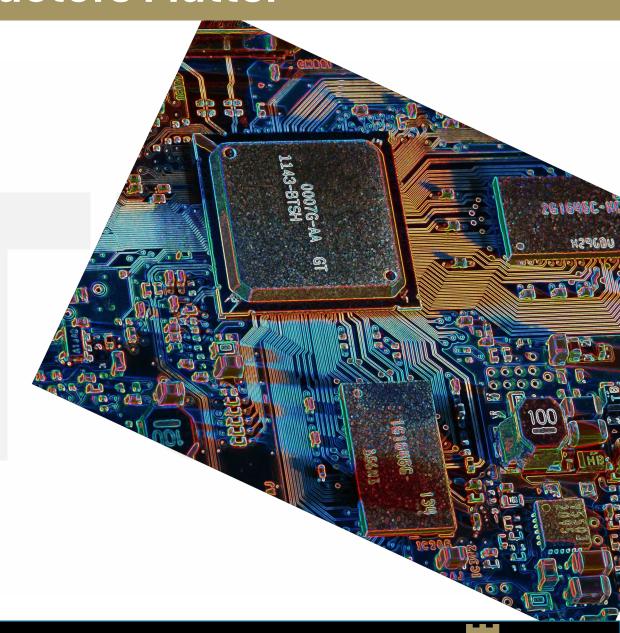

28th Engineering Week

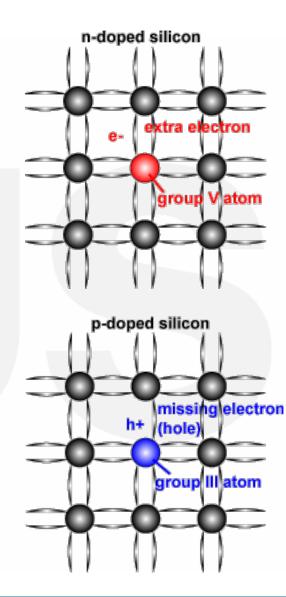

Basic Principles and Applications of Semiconductor Technology

What Are Semiconductors?

- A special class of materials.
- Controllable electrical properties.
- The role of the "band gap".
- Intrinsic vs. extrinsic materials.

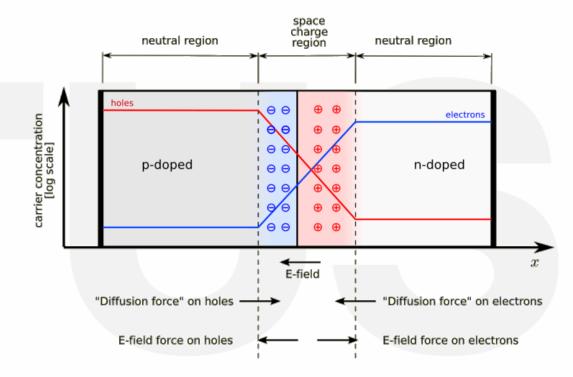

Common materials used:

- Silicon (Si) the workhorse of electronics due to abundance and stability.
- Gallium Arsenide (GaAs), Gallium Nitride (GaN), Silicon Carbide (SiC) – used for high-frequency, high-power, or optical applications.


Why Semiconductors Matter

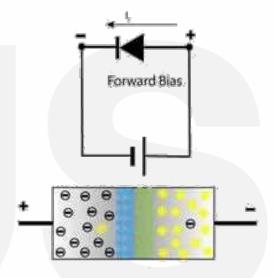
- The backbone of modern electronics.
- Enable miniaturisation and high-speed computing.
- Critical to global communication systems.
- Driving the energy transition.
- Revolutionising lighting and display technologies.
- Foundation for future technologies.

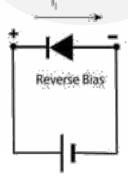
Doping — N-type and P-type


- Why doping matters.
 - Pure (intrinsic) semiconductors like silicon don't conduct very well at room temperature because they have very few free charge carriers.
- The goal of doping.
 - By carefully adding donor or acceptor atoms (typically only 1 impurity per 10⁶ silicon atoms), the type and number of charge carriers in the crystal lattice can be changed without destroying its structure.
- N-type semiconductor.
 - Created by adding donor atoms with five valence electrons (e.g., phosphorus, arsenic).
- P-type semiconductor.
 - Created by adding acceptor atoms with three valence electrons (e.g., boron, gallium).
- Balance and control.
 - The ratio of donor to acceptor atoms determines the carrier concentration and therefore, how conductive the semiconductor is.

P–N Junction Formation

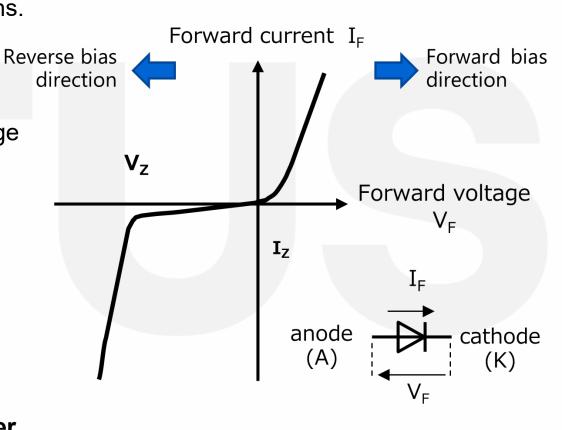
- Bringing opposites together.
 - **p-type** (rich in holes), **n-type** (rich in electrons) form a *p-n junction*.
- Initial carrier movement.
 - Electrons (n-type) & Holes (p-type) diffuse across the junction.
- Formation of the depletion region.
 - This diffusion creates a depletion zone a region depleted of free charge carriers.
- Establishment of the potential barrier.
 - The electric field opposes further diffusion of electrons and holes.
- Thermal equilibrium condition.
 - The junction remains stable with a small built-in voltage (typically around 0.6–0.7V for silicon).



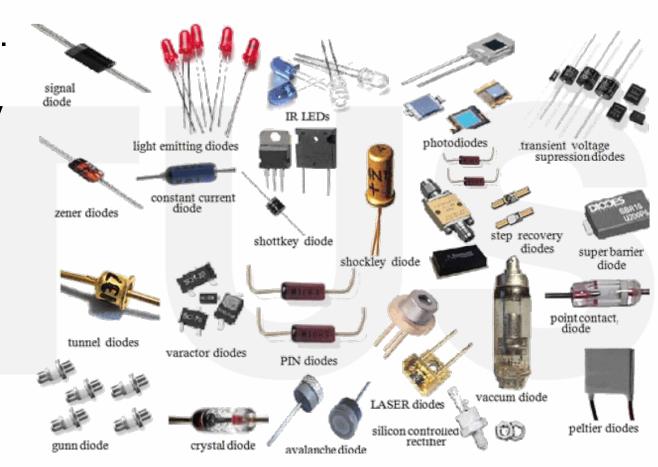


Biasing the P-N Junction

- Purpose of biasing.
 - By applying an external voltage to the p-n junction, we can alter the width of the depletion region and control whether current can flow.
- Forward Bias Turning the Junction "ON".
 - The positive terminal of the power source is connected to the p-type side, and the negative terminal to the n-type side.
 - The depletion region narrows, reducing the barrier height.
 - Once the applied voltage exceeds the built-in potential (~0.6–0.7 V for silicon), charge carriers can easily cross the junction.
- Reverse Bias Turning the Junction "OFF".
 - The positive terminal is connected to the n-type side, and the negative terminal to the p-type side.
 - The depletion region widens, and the barrier becomes higher.
 - Only a very small leakage current flows due to minority carriers.

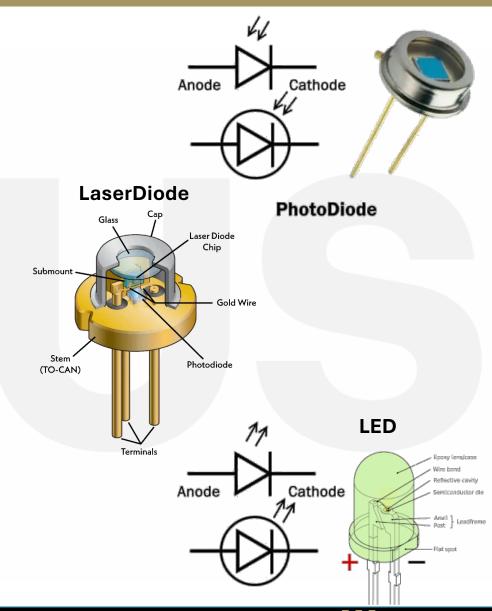


Diode Operation (Conceptual)


- Forward Bias The Conducting State.
 - The external voltage opposes the diode's built-in potential barrier. The depletion region narrows. Conduction begins.
- Reverse Bias The Blocking State.
 - The applied voltage adds to the built-in potential. The depletion region widens. Conduction halts (small leakage current)
- Breakdown Phenomena.
 - If the reverse voltage becomes sufficiently large, the electric field within the depletion region becomes strong enough to free bound electrons from the lattice.
 - This results in a sudden increase in current known as breakdown.
 - Two primary mechanisms: Avalanche Breakdown Zener Breakdown

Diode Types & Uses

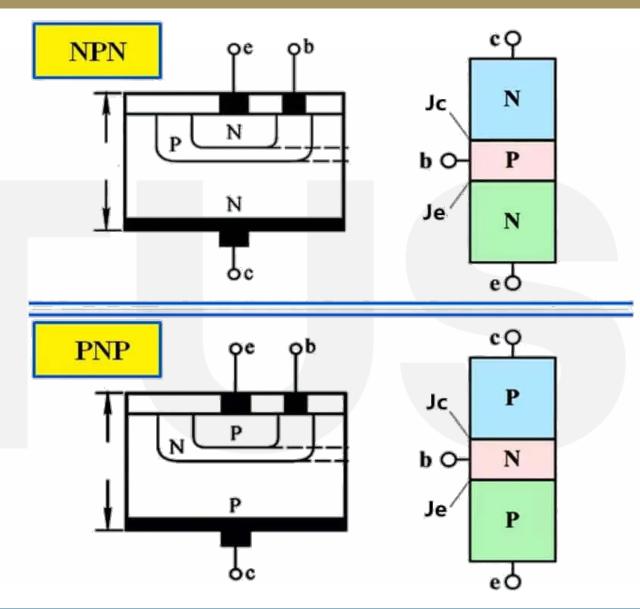
- Rectifier Diodes Turning AC into DC.
- Zener Diodes Voltage Regulation by Design.
- Schottky Diodes Speed and Efficiency.
- Light-Emitting Diodes (LEDs)
- Photodiodes Light as a Signal.



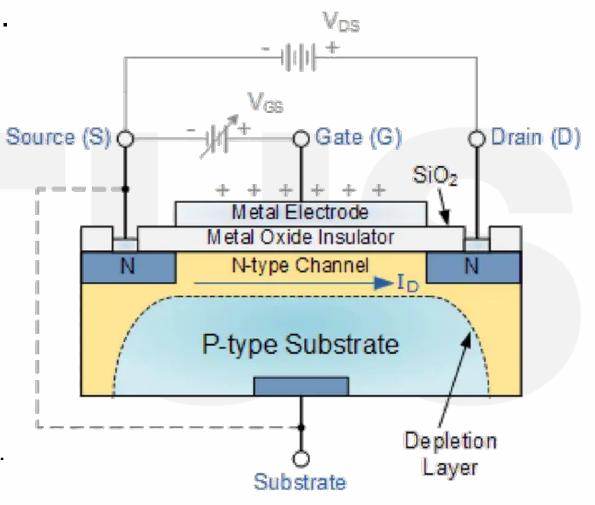
Optoelectronics: LEDs, Lasers, Photodiodes

- Light Emitting Diodes (LEDs).
 - When forward-biased, electrons and holes recombine across the junction.
 - This recombination releases energy as photons a process called electroluminescence.
 - High efficiency and long life (no filament or gas).
 - Low heat output and instant-on response.
 - Different colour LEDs have different forward voltages.

Laser Diodes


- Laser diodes operate on stimulated emission, where one photon triggers identical photons, producing a coherent light beam.
- Highly directional and coherent (same phase and wavelength).
- Can operate continuously or in pulses.
- Photodiodes Detecting Light.
 - A reverse-biased p-n junction where incident photons

BJT — Conceptual Operation


- A Three-Layer, Two-Junction Device.
 - Emitter (E) Heavily doped; its job is to inject charge carriers.
 - Base (B) Very thin and lightly doped; acts as a control gate that regulates how many carriers pass through.
 - Collector (C) Moderately doped and larger area; collects the carriers.
 - NPN (N-type) PNP (P-type)
- Current-Controlled Operation.
 - base-emitter junction is forward biased.
 - A small base current causes a much larger collector current.
 - $(I^c) = (I^B) * (\beta)$
 - $(I^e) = (I^B) + (I^c)$

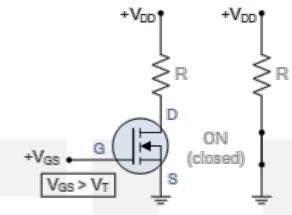
MOSFET — Conceptual Operation

- A Voltage-Controlled Semiconductor Switch.
 - Source (S) where charge carriers enter.
 - **Drain (D)** where carriers leave.
 - Gate (G) a metal electrode insulated from the semiconductor channel by a thin oxide layer.
- How It Works
 - Applying a gate voltage induces an electric field in the semiconductor.
 - This attracts charge carriers toward the surface.
 - Once enough carriers accumulate, a conductive channel forms.
- Contrast with BJT.
 - BJT: Current-controlled, MOSFET: Voltage-controlled.
 - This makes MOSFETs easier to drive from microcontrollers or logic Ic's.

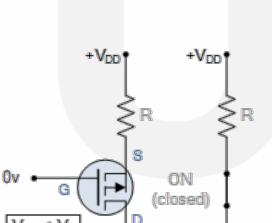
MOSFET (Metal–Oxide–Semiconductor Field-Effect Transistor)

Transistor as a switch

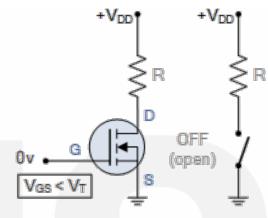
In the ON state,

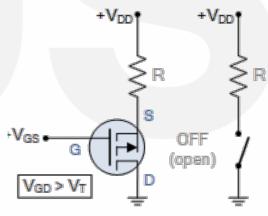

- The transistor conducts heavily (BJT in saturation, MOSFET in enhancement mode).
- Acts like a closed switch, allowing current to flow freely.

In the OFF state,


- It blocks current (BJT in cutoff, MOSFET with gate voltage removed (N) added (P).
- Acts like an open switch, isolating the load.

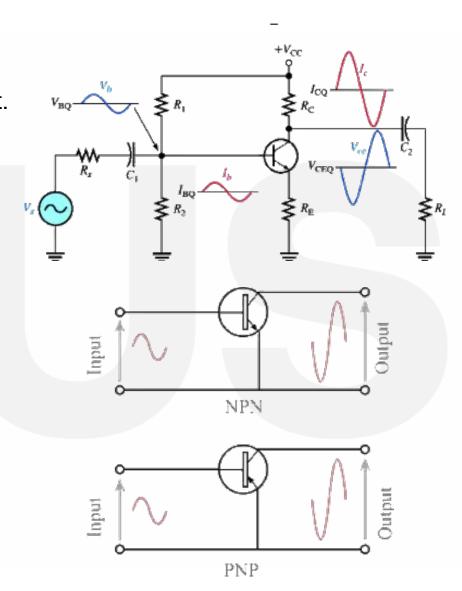
Advantages:


- Transistors switch in nanoseconds, enabling GHz clock rates in processors.
- Minimal energy wasted when fully on or off (especially with MOSFETs).
- Solid-state operation means no moving parts billions can operate simultaneously.


N-channel eMOSFET Biased ON

P-channel eMOSFET Biased ON

N-channel eMOSFET Biased OFF



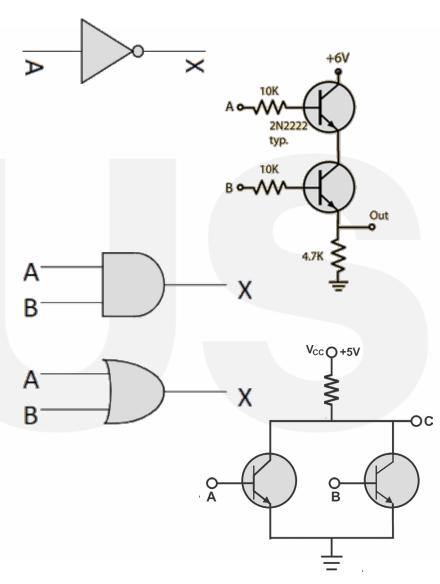
P-channel eMOSFET Biased OFF

Transistor as an amplifier

- In analogue applications,
 - Transistors work in their active region (partially on), where small variations in input cause proportional, larger variations in output.
 - This enables signal amplification boosting weak signals without distortion.
 - A small base (or gate) signal controls a larger collector/drain current.
 - The transistor acts as a variable resistor or valve, where the control voltage/current adjusts output flow.
 - The output signal maintains the same shape as the input, but with greater amplitude or power.
- Types:
 - Common emitter / source: Voltage amplifier (used in audio, sensor circuits).
 - Common collector / drain: Buffer stage (impedance matching).
 - Common base / gate: Current amplifier (high-frequency use).

Logic Gates (Transistor)

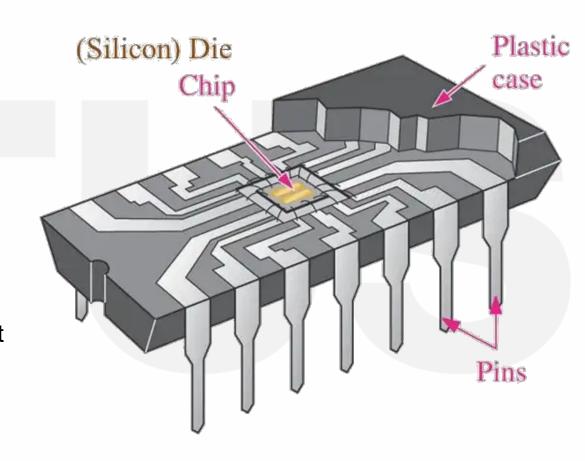
Building Logic and Intelligence


- Combining transistors in clever ways produces the basic logic functions (AND, OR, NOT, NAND, NOR, XOR, XNOR).
- A simple inverter circuit → NOT gate.
- Two MOSFETs in series → AND gate behaviour.
- Two in parallel → OR gate.

Linking gates together:

- Sequential logic: Such as flip-flops and counters.
- Arithmetic and control: Such as adders, multiplexers, and control units, which underpin the architecture of CPUs and microcontrollers.

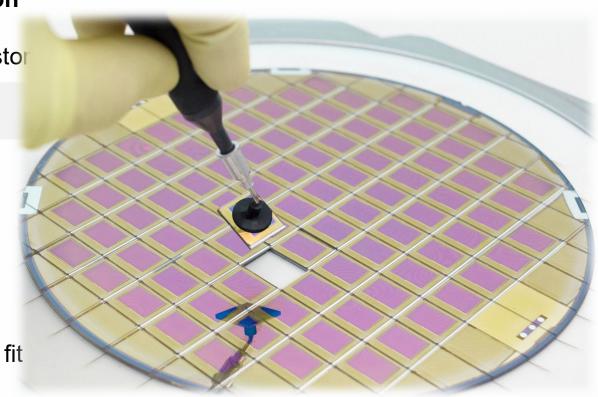
A single **microprocessor chip** may contain **tens of billions** of transistors, each switching billions of times per second.


This scalability is what made the **Information Age** possible — from smartphones to AI.

Integrated Circuits & Fabrication (High Level)

- An Integrated Circuit (IC):
 - Is a complete electronic circuit containing many transistors and passive components (resistors, capacitors) fabricated together on a single piece of silicon, called a die.
 - Reduces size, cost, and power consumption compared to discrete components.
 - Increases speed and reliability by eliminating long wiring paths.
 - Enables entire systems (CPUs, sensors, memory) to fit on one chip.
 - The invention of the IC (1958–1959) transformed electronics.

Integrated Circuits & Fabrication (High Level)

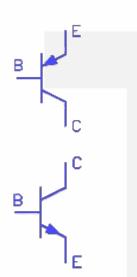

How ICs Are Made:

 A wafer is a thin, polished disc of crystalline silicon (typically 150–300 mm in diameter).

 It serves as the substrate on which billions of transistor are built simultaneously.

Fabrication process

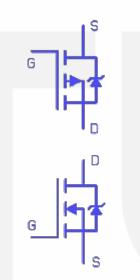
- Reduces size, cost, and power consumption compared to discrete components.
- Increases speed and reliability by eliminating long wiring paths.
- Enables entire systems (CPUs, sensors, memory) to fit on one chip.
- The invention of the IC (1958–1959) transformed electronics.


Semiconductor Sensors & IoT

Common uses:

- Inverters (DC ↔ AC Conversion):
- Motor Drivers:
- Electric Vehicles (EVs):
- Other applications:

BJT


output current is a function of current signal into base

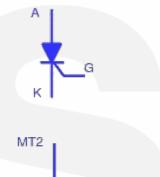
a current signal into base modulates the number of current carriers available to carry current thru device

FET


output current is a function of voltage signal at gate

a voltage signal at gate modulates channel resistance, and thus current thru device

IGBT


output current is a function of voltage signal at gate

a voltage signal at gate modulates both channel resistance and available current carriers, and thus current thru device

Thyristor

output latches on when triggered by pulse signal at gate

a small gate pulse triggers the device on. It stays latched on until the current thru the device drops below its holding current (I_H)

Emerging Materials & Trends

- The Role of Semiconductors in Modern Sensing.
 - Semiconductors are not only used for computing and power — they're also at the heart of modern sensors, converting physical quantities (like temperature, light, motion, or gas concentration) into electrical signals.
 - That same technology that builds transistors and ICs also builds tiny, intelligent sensors, forming the foundation of the Internet of Things (IoT).

TUS Midlands Midwest